Prym varieties of pairs of coverings

نویسندگان

  • Herbert Lange
  • Sevin Recillas
چکیده

The Prym variety of a pair of coverings is defined roughly speaking as the complement of the Prym variety of one morphism in the Prym variety of another morphism. We show that this definition is symmetric and give conditions when such a Prym variety is isogenous to an ordinary Prym variety or to another such Prym variety. Moreover in order to show that these varieties actually occur we compute the isogeny decomposition of the Jacobian variety of a curve with an action of the symmetric group S5.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algebraic description of Jacobians isogeneous to certain Prym varieties with polarization (1,2)∗

For a class of non-hyperelliptic genus 3 curves C which are 2-fold coverings of elliptic curves E, we give an explicit algebraic description of all birationally nonequivalent genus 2 curves whose Jacobians are degree 2 isogeneous to the Prym varieties associated to such coverings. Our description is based on previous studies of Prym varieties with polarization (1,2) in connection with separatio...

متن کامل

Polarizations of Prym Varieties of Pairs of Coverings

To any pair of coverings fi : X → Xi, i = 1, 2 of smooth projective curves one can associate an abelian subvariety of the Jacobian JX , the Prym variety P (f1, f2) of the pair (f1, f2). In some cases we can compute the type of the restriction of the canonical principal polarization of JX . We obtain 2 families of Prym-Tyurin varieties of exponent 6.

متن کامل

2 00 4 A family of Prym - Tyurin varieties of exponent 3

We investigate a family of correspondences associated tó etale coverings of degree 3 of hyperelliptic curves. They lead to Prym-Tyurin varieties of exponent 3. We identify these varieties and derive some consequences.

متن کامل

Prym Varieties of Cyclic Coverings

The Prym map of type (g, n, r) associates to every cyclic covering of degree n of a curve of genus g, ramified at a reduced divisor of degree r, the corresponding Prym variety. We show that the corresponding map of moduli spaces is generically finite in most cases. From this we deduce the dimension of the image of the Prym map.

متن کامل

MAXIMAL PRYM VARIETY AND MAXIMAL MORPHISM

We investigated maximal Prym varieties on finite fields by attaining their upper bounds on the number of rational points. This concept gave us a motivation for defining a generalized definition of maximal curves i.e. maximal morphisms. By MAGMA, we give some non-trivial examples of maximal morphisms that results in non-trivial examples of maximal Prym varieties.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004